A Shift in Perspective on Causality in Domain Generalization

Damian Machlanski, Stephanie Riley, Edward Moroshko, Kurt Butler, Panagiotis Dimitrakopoulos, Thomas Melistas, Akchunya Chanchal, Steven McDonagh, Ricardo Silva, Sotirios A. Tsaftaris

Causality and Generalization

- Generalization is that the relationship between model inputs and the prediction target is stable across environments.

- Distribution of the target variable conditioned parents is invariant under changes to the rest of the system.

What Could Go Wrong?

"Using only target's Causal Parents as model inputs for prediction could be robust to all the changes."

In reality this is NOT the case:

Prediction with causal features is <u>often overshadowed</u> by models which use all features.

Why This is Happening?

Causal mechanisms should remain invariant across domains = Causal features should NOT exhibit concept shift

Impact of Concept Shift:

A synthetic dataset: $y = \alpha x + sb^T r + N(0,1)$

Two cases: s = 1 (no concept shift) and s = -1 (with concept shift).

Linear regression using causal feature x, or all features (x and r).

Latent Confounding

Non-Causal ≠ Unstable

Concepts like stability are context-dependent.

Discovery & Prediction

Causal Discovery is
task agnostic no
variables like
prediction & target.

Signal-Noise Ratio

May be unobserved

confounder variables

influence the target.

Causal features are recorded with a low SNR, might not be useful for prediction

Shift Strength

A small domain shift might not be enough to expose a spurious predictor.

Conclusion and Take-Aways

In DG problem *Causality CANNOT be reduced to feature selection* principles.

Deeper insights into the *Roles of Confounding*, the *Nature of Anticipated Shifts* are needed.

